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Scale dependent growth 
from a late (z<0.2) transition 
in dark energy dynamics

(similar to (p)reheating after inflation, but from quintessence)
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synopsis

• why?

• phenomenology: 

➡ end of accelerated expansion

➡ resonant growth of structure

• observational consequences

• shortcomings
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“we” are not important
or liked

70%

25%
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ä(t) > 0

75%
70%

w = P/ρ ∼ −1

ä(t)
a(t)

= −4πG

3
(ρ + 3P ) > 0

“we” are not important
or liked

image: High Z Supernova Search Team, HST
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a working model: ΛCDM

L =
1

16πG
[R−2Λ] + [Lsm+LWIMP ]
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but ...

ΛΛ(theory)
Λ(obs)

∼ 10120
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an alternative

quintessence

L =
1

16πG
R + [Lsm + LWIMP +L(ϕ)]

L(ϕ) =
1
2
(∂ϕ)2 + U(ϕ)

• Important: does not solve 
the Λ problem, it is an 
alternative, not a 
solution.
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what is needed

ä(t)
a(t)

= −4πG

3
(ρ + 3P ) > 0

slow roll !ϕ̇2 � U

w =
P

ρ
=

1
2 ϕ̇2 − U
1
2 ϕ̇2 + U

∼ −1
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quintessence potential

slow roll

oscillatory

ϕ ∼M

U ��(ϕ) ∼ m2

U(ϕ)

ϕ̇2 � U

w =
P

ρ
=

1
2 ϕ̇2 − U
1
2 ϕ̇2 + Uϕ→
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successful before: 
inflation

oscillatory

ϕ ∼M

U ��(ϕ) ∼ m2

U(ϕ)

ϕ̇2 � U
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but inflation ends

oscillatory

ϕ ∼M

U ��(ϕ) ∼ m2

U(ϕ)

ϕ̇2 � U
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end of quintessential 
acceleration?

oscillatory

ϕ ∼M

U ��(ϕ) ∼ m2

possible, but not necessary

z < 0.2
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motivation

• explicit models: eg axion monodromy quintessence 
(Panda et. al), axiverse (Arvanitaki et. al) etc.

• [usually, difficult to maintain flat potentials]

• And ... 
➡ extremely rich phenomenology 

➡ observationally constrainable
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quintessence potential

U(ϕ) =
m2M2

2

�
(ϕ/M)2

1 + (ϕ/M)2(1−α)

�

ϕ ∼M

U(ϕ) ∝ ϕ2α

U ��(ϕ) ∼ m2
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a worked example
α ≈ 0

M ≈ 10−3
mpl

m ≈ 103
H0

ρ ∼ m
2
M

2 ∼ m
2
plH

2
0

ϕ ∼M

U(ϕ) ∝ ϕ2α

U ��(ϕ) ∼ m2
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aosc

0.0 0.2 0.4 0.6 0.8 1.0
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0
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��M
field evolution 

slow roll

oscillatory

ϕ ∼M

U ��(ϕ) ∼ m2
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equation of state
slow roll

oscillatory

ϕ ∼M

U ��(ϕ) ∼ m2

0.0 0.2 0.4 0.6 0.8 1.0
�1.0
�0.5
0.0
0.5
1.0

a

w
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H
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M
Hubble

slow roll

oscillatory

ϕ ∼M

U ��(ϕ) ∼ m2
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expansion history

aosc
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what about 
perturbations ?

∂2
t δϕk +

�
k2 + U ��(ϕ̄)

�
δϕk = 0

δϕk(t) ∼ eµkt
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Floquet analysis
∂2

t δϕk +
�
k2 + U ��(ϕ̄)

�
δϕk = 0

δϕk(t) ∼ eµkt
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include expansion

δϕk ≈
δϕk(ti)
a3/2(t)

exp
��

dtµk(t)
�

=
δϕk(ai)

a3/2
exp

��
d ln a

µk(a)
H(a)

�

�(µk)� H

∂2
t δϕk + 3H∂tδϕk +

�
k

2

a2
+ U

��(ϕ̄)
�

δϕk = 0
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related interpretations

• imaginary sound speed at low wave-
numbers only Johnson & Kamionkowski

• resonant particle production Traschen & 
Brandenberger,    Linde, Kofman& Starobinski
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resonant growth: important

• growth on limited range of scales 

• growth rate can be much faster than H
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include gravity

Note: dark matter perturbations included via constraints

ds2 = −(1 + 2Φ)dt2 + a2(1− 2Ψ)dx2

Φk = Ψk

δ̈ϕk + 3H ˙δϕk +
�
k

2

a2
+ U

��(ϕ)
�

δϕk = −2U
�(ϕ)Ψk + 4ϕ̇Ψ̇k

Ψ̈k + 4HΨ̇k +
1

m
2
pl

U(ϕ)Ψk =
1

2m
2
pl

�
ϕ̇ ˙δϕk − U

�(ϕ)δϕk

�

no anistropic stress
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initial conditions 
(during matter domination)

�b�

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

a

�
k�a�

�a�

aosc anl
0.0 0.2 0.4 0.6 0.8 1.0

10

104
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1010

a

∆�
k�a�

δϕk =
ck

k
3
H

[cos(2kH + ∆k) + 2kH sin(2kH + ∆k)]− 2Ψk

U
�(ϕ)
H2

1
k

2
H

�
1− 7

k
2
H

+
35

2k
4
H

�

δϕk ∝ a2

Ψk ≈ const
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quintessence +
gravitational potential
�a�

aosc anl
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limits of linear analysis

�δϕ2�1/2
L = [∆δϕ(k, a)]k∼L−1

�a�

0.002 0.005 0.01 0.02 0.05 0.1

10�8

10�6

10�4

0.01

1

k �Mpc�1�

�
∆�
�k��M

�
r.m.s amplitude of quintessence fluctuations
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∆δϕ(k, anl) ∼ ϕosc(anl).

�b�

0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97
0

5
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15

a

Condition for non�linearity

limits of linear analysis
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power spectra

(i) gravitational potential
(ii) dark matter (WIMP)
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potential power spectrum 

initial condition consistent with LCDM at early times (CAMB/CMBFast)

�a�
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�
�2 �k�

Gravitational potential power spectrum

initial conditions

LCDM today

our model today
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matter power spectrum 

�b�
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WIMP overdensity power spectrum
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dark matter (WIMP) growth

�c�

0.0 0.2 0.4 0.6 0.8 1.0
0
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a

∆ d
m
�a�

δ̈dm + 2H δ̇dm = −k
2

a2
Ψk + 3

�
2HΨ̇k + Ψ̈k

�
.

δdm = − a
3

3H
2
0Ωdm

��
6H

2 − ϕ̇2

m
2
pl

+ 2
k

2

a2

�
Ψk + 6HΨ̇k +

ϕ̇

m
2
pl

˙δϕk +
1

m
2
pl

U
�(ϕ)δϕk

�

aosc anl
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important

�a�
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�a�

0.002 0.005 0.010 0.020 0.050 0.100

10�13

10�12

10�11

10�10

10�9

k �Mpc�1�

�
�2 �k�

Gravitational potential power spectrum

one important scale

galaxies and dark matter respond more slowly 

oscillatory

U ��(ϕ) ∼ m2

after fixing expansion history

k ∼ 0.05m
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observational signature!

• extra power in potential (see it in lensing)

• rapid change in potential (see in ISW)

• not so in the matter power spectrum (see 
in galaxy power spectrum)
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weak lensing
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integrated sachs-wolfe
�b�
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anlaosc

∆ISW
l (k) =

� anl

ai

da jl(kχa)[∂a(Ψk + Φk)]

≈ 2
�

j

jl(kχaj )∆Ψk(aj)

∆l(k) = ∆SW
l (k) + ∆ISW

l (k)

Cl =
�

d ln k k3∆2
l (k)
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integrated Sachs-Wolfe
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choice of params.
• change time of transition aosc

• change m to change number of oscillations

• M (linked to m) determines rate of growth

• change slope of potential (not easy)

oscillatory

U ��(ϕ) ∼ m2

ϕ ∼M

aosc
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Non-Linearity

Qua
lita
tive
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MA (2010)

non-linearity and fragmentationQua
lita
tive
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rich non-linear phenomenology

MA 2010
MA, Finkel, Easther 2010
MA, Easther, Finkel, Flauger, Hertzberg 2011

Also see McDonald&Broadhead, Hindmarsh & Salmi, Gleiser et. 
al ...

nonlinear fragmentation!

(-- additional ISW --)

PSpectRe: Easther, Finkel and Roth
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lumps?

(1) oscillatory (2) spatially localized (3) very long lived

Bogolubsky & Makhankov 1976, Gleiser 1994, Copeland et al. 1995, ...

ϕfor some range of  

V (ϕ)− 1
2
m2ϕ2 < 0

necessary:

satisfied if α < 1

osci
llon

!
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the all important sign

V ∼ 1
2
m2ϕ2−λ

4
ϕ4 +

g2

6m2
ϕ6 + . . . + hϕψ̄ψ

Movie: courtesy of A Speranza (MIT)
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STABILITY

• linear stability analysis: (collapse) long wavelength   
(flat tops: MA & Shirokoff 2010)

• effects of expansion (Farhi et. al 2008)

• rate of energy loss by radiation, classical and 
quantum (Segur and Kruskal 1987, Hertzberg 2010 )

• For a restricted class of potentials
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stability

stableunstable
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non-linear simulations

• include non-linear dark matter clustering

• include non-linear quintessence pert.

• additional observable signature

49Wednesday, September 14, 2011



motivation: 2

•  scale dependent potential growth 

➡ simple, no gravity modification

➡ no Chameleons or Vainshtein

• difference in lensing and matter spectrum

• No effective anisotropic stress (linear)

• Growth rate (from matter) and expansion 
history not enough
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short comings

• why should the transition happen now and 
not in the distant future ? (extra)
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summary
scale-dependent growth gravitational 

potential growth, dark clumps

oscillatory

ϕ ∼M

U ��(ϕ) ∼ m2

resonant growth

constrain via 
           (i) lensing 
           (ii) integrated Sachs-Wolfe

An example with scale dependent potential growth + 
difference in matter and gravitational power spectrum 
without modified gravity/non-canonical kinetic terms
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lumps and bumps 
at the end of 

inflation 

53
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papers and 
collaborators

1) 1002.3380  with D. Shirokoff (MIT)
2) 1006.3075  MA
3) 1009.2505  MA, Easther and Finkel (Yale) 
4) 1106.3335  MA, Easther, Finkel, Flauger (Yale) & Hertzberg(Stanford)
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?temperature

time

energy

what does the universe look like 
at the end of inflation?

?

55Wednesday, September 14, 2011



φ

V (φ)

inflation

inflation
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φ

V (φ)

end: oscillatory regime

inflation

end of inflation
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χ

daughter fields

, ψ

end of inflation

φ

V (φ)

end: oscillatory regime

inflation
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• shape of the potential

• how does it couple to other fields χ, ψ

field dynamics at the 
end of inflation
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1

φ

perturbative

V ∼ 1
2
m2

ϕϕ2 + g2ϕ2χ2 + hϕψ̄ψ + . . .

ψ

scenario I

Γ(ϕ→ ψψ) ∼ h
2
mϕ

8π
� H
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χ

Trachen & Brandenberger (1990), Kofman, Linde, Starobinsky et. al (1994) ...

explosive

V ∼ 1
2
m2

ϕϕ2 + g2ϕ2χ2 + hϕψ̄ψ + . . .

scenario II

decay rate >> HMovie: courtesy of R. Easther

�χ = V,χ = g2ϕ2χ
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perturbative

MA 2010
MA, Finkel, Easther 2010
MA, Easther, Finkel, Flauger, Hertzberg 2011

Also see: McDonald & Broadhead, Rajantie & 
Copeland, Gleiser et. al. 

ψ

V ∼ 1
2
m2ϕ2−λ

4
ϕ4 +

g2

6m2
ϕ6 + . . . + hϕψ̄ψ

scenario III

decay rate << H
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motivation:
shallow potentials

V (ϕ) ∝ ϕ2α

r ≈ 8α

N

ns ≈ 1− α + 1
N

α < 1

α = 1

α = 2
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• monodromy (Silverstein & Weshtpal )                  

• axion monodromy (McAllister, Silverstein & Westphal)               

• supergravity (Kallosh & Linde)             

• generic flattening of potentials (Dong et. al)             

α = 1/3

α = 1/2

α < 1
α < 1

motivation:
shallow potentials

V (ϕ) ∝ ϕ2α

ϕ ∼M

V ��(ϕ) ∼ m2
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asymptotic slope

energy fraction: >> 50%
fr

ac
tio

n 
in

 o
sc

ill
on

s

(inverse)scale where potential changes shape

α � 1

analytic curves from 
Floquet analysis

�
|�(µk)|

H

�

max

� 10

mpl/M � 1

mpl

M
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• inhomogeneous reheating (with J.T. Giblin and H. Childs)               

• gravitational effects:

- black holes ? 

- expansion history and influence on inflationary 
observables (Adshead et. al)?

- g-waves ?

what to do with them?
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other ongoing projects

• distinguishing (light) axions and WIMPs from 
astrophysics (with E. Bertschinger)

• strong lensing: flux anomalies (with T. Cheung and D. 
Bulmash)

• analytic approach to non-linear structure 
formation (with A. Schulz)
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